Maximal ideals in a bicomplex algebra and bicomplex Gelfand–Mazur theorem

نویسندگان

چکیده

In this paper, we study the maximal ideals in a commutative ring of bicomplex numbers and then describe algebra. We found that kernel nonzero multiplicative BC-linear functional Banach algebra need not be ideal. Finally, introduce notion division generalize Gelfand–Mazur theorem for

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bicomplex algebra and function theory

This treatise investigates holomorphic functions defined on the space of bicomplex numbers introduced by Segre. The theory of these functions is associated with Fueter’s theory of regular, quaternionic functions. The algebras of quaternions and bicomplex numbers are developed by making use of so-called complex pairs. Special attention is paid to singular bicomplex numbers that lack an inverse. ...

متن کامل

The Invariant Variational Bicomplex

We establish a group-invariant version of the variational bicomplex that is based on a general moving frame construction. The main application is an explicit group-invariant formula for the Euler-Lagrange equations of an invariant variational problem.

متن کامل

Deformation Bicomplex of Module-algebras

Let H be a bialgebra. An H-module-algebra is an associative algebra A that is also an H-module such that the multiplication map on A becomes an H-module morphism. This algebraic structure arises often in algebraic topology, quantum groups [11, Chapter V.6], Lie and Hopf algebras theory [3, 16, 19], and group representations [1, Chapter 3]. For example, in algebraic topology, the complex cobordi...

متن کامل

Bicomplex Quantum Mechanics: II. The Hilbert Space

Using the bicomplex numbers T which is a commutative ring with zero divisors defined by T = {w0+w1i1+w2i2+ w3j | w0, w1, w2, w3 ∈ R} where i21 = −1, i22 = −1, j = 1, i1i2 = j = i2i1, we construct hyperbolic and bicomplex Hilbert spaces. Linear functionals and dual spaces are considered on these spaces and properties of linear operators are obtain; in particular it is established that the eigenv...

متن کامل

Multisymplectic structures and the variational bicomplex

Multisymplecticity and the variational bicomplex are two subjects which have developed independently. Our main observation is that re-analysis of multisymplectic systems from the view of the variational bicomplex not only is natural but also generates new fundamental ideas about multisymplectic Hamiltonian PDEs. The variational bicomplex provides a natural grading of differential forms accordin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Variables and Elliptic Equations

سال: 2021

ISSN: ['1747-6941', '1747-6933']

DOI: https://doi.org/10.1080/17476933.2021.1934677